

ULDB Mission Operations

David D. Gregory
ULDB Mission Operations Manager
PSL

Mission

Operations

Definition Review

Mission Operations Phases

- Mission Planning
- Integration & Testing
- Launch Operations
- Flight Monitor & Control
- Recovery Operations

Mission Planning Trajectory Planning

Requirements

- Evaluate Success Probabilities
 - Latitude Requirements
 - Time of Year
 - Balloon & Trajectory Control Performance
 - Safety Risk Analysis
- Program / Mission Planning (1-2 years out)
 - Science Requirements
 - Establish International Agreements (Concurrence)
 - Launch Site Selection
- Mission Operations (days weeks)
 - What-If Predictions
 - Event Based Modeling
 - Launch and Termination Decisions

Mission Planning Trajectory Planning

Options

- Traditional Analysis Methods NMC / MRN Data
 - Manpower Intensive
- Simulation & Planning Tool
 - Automated Data Collection / New (Additional) Data Sources
 - Analysis & Prediction
 - Graphical Display on Single / Multiple Traj. Plots
- Southern Hemisphere Seasonal Opportunities
 - Austral Summer Versus Austral Winter

Mission Planning Trajectory Planning

Selected Approach

- Simulation & Planning Tool
 - Phase I Feasibility
 - GSFC DAO & UKMO Data Sets
 - Phase II Analysis (In Progress)
 - Verification of Accuracy
 - Launch Site / Launch Date Analysis
 - Overflight Analysis
 - Thermal Environmental Analysis
 - Phase III Trajectory Simulation Tool
 - Workstation / Simulation Runs / What-If Scenarios
- Southern Hemisphere Summer Season
 - Winter Season Trade Study Indicates:
 - Trajectory Uncertainty Due To Strat-Warms
 - Impossible to Perform Long Term Predictions
 - Difficult for Short Term Predictions

Mission Operations

Mission Planning

Trajectory Planning

• Southern Hemisphere Winter Wind Speeds

Alice Springs 5 Mb Winds

Mission Planning

Trajectory Planning

• Southern Hemisphere Summer Wind Speeds

Alice Springs 5 Mb Winds

Mission Operations

Mission Planning

Trajectory Planning

• Southern Hemisphere Winter Zonal Flow

Mission Operations

Mission Planning

Trajectory Planning

- Southern Hemisphere Summer Zonal Flow
 - Higher Probability of Recovery

Mission Planning Mission Safety

Requirements

- Acceptable CE (1 X 10⁻⁶) Risk Analysis
 - Balloon Reliability
 - Areas of Overflight / Reliability in Traj. Prediction
 - Recovery Systems / Impact Location Prediction
 - Ballooncraft Support Systems

• Options

- Overflight of Lower Risk Regions
- Enhanced Trajectory Planning / Reliability / Launch Site
- Balloon Reliability
- Enhanced Recovery Systems
 - · GPS Guided Parafoil
 - Dropsondes to Enhance Descent Vector
- Ballooncraft Support Systems
 - Redundancy
 - Global TM/Command With Ballooncraft

Mission Planning Mission Safety

Selected Approach

- Final CE TBD
 - Many Variables Still OPEN
- Feasibility
 - Existing CE Alice Springs-Brazil, Summer LDB Flights
 - Existing 29X ZPB, (Assume ULDB Equal or Better)
 - Established Procedures
- Possible Enhancements For Improved CE:
 - Trajectory Planning Tool (In Phase 2 of 3)
 - GPS Guided Parafoil
 - Dropsonde
 - Ballooncraft Support Systems Redundancy / Global TM
 - Balloon Reliability (Demonstrated Prior To Demo 2000)
 - Southern Hemisphere, Lower Risk Trajectory
 - Air Surveillance Prior To Termination

Mission Planning Launch Site Selection

Requirements

- Science & Mission Requirements
- Safety
- Ease of Logistics / Minimize Costs / Obtain MOUs
- International Approvals
- Probability for Successful Recovery

Options for Demo 2000

- Established LDB Operations From:
 - Australia / New Zealand / Alaska / Antarctica
- Alternate Launch Sites In So. Brazil

Mission Planning Launch Site Selection

Selected Approach

- So. Brazil CE on Balloon Ascent Unacceptable
 - Risk On Ascent After Launch
 - Highest Risks on Ascent & Initial Float Phase
 - Unplanned, Less Control Over Impact Location
 - Acceptable for Planned Termination
 - Controlled, Planned Impact
- Alice Springs OR New Zealand (TBD)
 - Established Facilities
 - Acceptable CE For LDB
 - Alice Springs Better Strategically For Recovery
 - Greater Percentage Of Time Over Land
 - Existing MOU With Australia

Mission Planning International Agreement

Requirements

- Launch
- Overflight
- Impact & Recovery

Options

- Orientation Meeting W/Code-I & NASA Export Office
- Established Precedence From LDB
- Pursue N.Hem. or Alternate Areas of Over-flight
 - Trajectory Planning Tool
 - Establish CE Variables
 - Demonstrated Capability

Selected Approach

- Code-I Is Planning This Coordination
- Existing MOU W/Univ. New South Wales (Australia)
- No Known Constraints At This Time

Mission Operations

Integration & Test

Requirements

- Support Personnel
- Facilities
- Environmental Testing
- Telemetry / Test

Options

- Personnel
 - Science / Wallops / NSBF / Other Contract
- Facilities
 - Wallops / NSBF / Science Home Institution
- Environmental Testing
 - Wallops / GSFC / NSBF
- Telemetry / Test
 - Wallops / NSBF

Mission Operations

Integration & Test

Selected Approach

- Personnel
 - Principally Science & Wallops Integration Team
 - Augmented w/Contract As Required
 - Consistent With Program Directives
 - Lowest Impact Upon Existing Balloon Program Support
- Facilities
 - Wallops Offers Three Areas for I&T
 - Bldgs. F10 / M20 / M16 (No Cost)
 - I&T Primarily Supported By Wallops Personnel
 - M16 & M20 Available For Long Term Use
 - Best Accommodates Most Personnel Involved In I&T

Mission Operations

I&T Facilities

FIRST FLOOR PLAN

Mission Operations

I&T Facilities

FIRST FLOOR PLAN

NASA

ULDB Systems Definition Review

Mission Operations

I&T Facilities

Mission Operations

Integration & Test

Selected Approach

- Environmental Test
 - Bldg. F10 Environmental (Subsystem Testing)
 - 2 ea. 2' X 2' Thermal / Vacuum
 - 7 ea. 1' X 2' Thermal / Vacuum
 - 1 ea. 7' X 12' Vacuum
 - GSFC (Full Up Testing)
 - 238 Chamber
 - 12' cylindrical X 15'
 - -90 deg. C to +90 deg. C
 - Atm to <1 millibar
 - NSBF (Alternate)
 - Bemco ~6' X 6' X 7' Thermal / Vacuum
 - -100 C to +70 C
 - Atm to 0.7 millibar

Mission Operations

Integration & Test

Selected Approach

- Telemetry / Test
 - LOS RF Test Station Bldg. F10
 - Push End-to-End TDRSS Data Via INTERNET
 - TDRSS RF Test Set (TURFTS)
 - Argos / INMARSAT-C / Iridium / Argos Network Routed
 - Budgeted For Test Equipment

Mission Operations

Launch Operations

Requirements

- Personnel
- Launch Equipment
- LOS Telemetry Ground Stations
- Facilities

Options

- Personnel
 - Launch NSBF
 - Ballooncraft Readiness Integrated Payload Team
- Launch Equipment NSBF
- TM Ground Station NSBF or Wallops Supported or New Procurement of Equipment
- Facilities Existing (Alice Springs) or Leased (New Zealand) TBD

Mission Operations

March 25, 1998

Launch Operations

Selected Approach

- Personnel
 - Launch Conducted By NSBF
 - They're The Experts
 - Programmatically Consistent With NASA Balloon Program Operations
 - Augmented By I&T Team For Ballooncraft Preps & Flight Monitoring and Control
- Launch Equipment
 - Standard Launch Method
 - Crane Launch
 - Standard Launch Techniques Using 36" Spool
 - Careful Metering of Inflation
- LOS Ground Stations
 - NSBF Provided; L/S-Band / PCM / UHF Command
 - Difficulty Planning On Wallops TM Supt. Scheduling
 - Voice / Data Link Between OCC & Launch Site

Mission Operations

Flight Monitor & Control

Requirements

- Flight Management
 - Continuous, 24 Hrs/Day
- Trajectory Analysis & Control
 - Continuous Throughout Flight
- Personnel
- Telemetry Ground Station
- Facilities
 - Operational Control Center
 - INTERNET
 - Power
 - TDRSS POCC Support

Mission Operations

Flight Monitor & Control

• Options

- Flight Management
 - NASA
 - NSBF
- Trajectory Analysis & Control
 - Conventional NSBF Methods
 - Trajectory Simulator
 - Balloon Control Methods
- Personnel Manning
 - NASA / NSBF / Science Investigators
- Telemetry Ground Station
 - New / Existing / Developed
- Facilities
 - NSBF / WFF / New

Mission Operations

Flight Monitor & Control

Selected Approach

- Flight Management
 - NSBF Has Mission & Flight Management Responsibility
 - NASA Has Program Management Responsibility
 - Science PI Has Instrument Responsibility Normally Coordinates With Flight Director or Operations Manager
- Real Time Trajectory Analysis & Control
 - Trajectory Simulator
 - What If / Near Real Time Predications
 - NSBF Met Support
 - Augment and Verify Trajectory Simulator
 - ULDB Developed Control Methods
 - Valving / Ballasting

Mission Operations

Flight Monitor & Control

Selected Approach

- Personnel
 - NSBF Mission Management & Flight Director Control
 - On Call 24 Hrs/Day
 - Control Center Operations
 - NSBF With Wallops Augmentation
 - Two People Manning 24 Hrs/Day
 - TDRSS Scheduling
 - Ballooncraft Monitoring
 - Science Investigator Coordinates With NSBF Flight Director OR Operations Manager. Normally at Home Institution Accessing Data/Commands via INTERNET

Mission Operations

Flight Monitor & Control

Selected Approach

- Telemetry Ground Station
 - TDRSS POCC
 - Mission Planning Terminal / Data / Command
 - Add POCC Terminal(s) To Existing Systems
 - Multicast From White Sands For Redundancy & Distribution
 - INMARSAT / Argos / Iridium
 - Local Terminal (INMARSAT Commands)
 - Data Delivery Via Internet
 - File Server Data Archive
 - NSBF Primary / WFF Backup
 - Both Servers Operate Concurrently
 - Mitigate Risk of Network Outage

Mission Operations

Flight Monitor & Control

Selected Approach

- Facility @ NSBF
 - Space Available For Monitor & Control Center Equip.
 - Established TDRSS POCC
 - No Additional Network Infrastructure Required
 - Power Backup / UPS / Generator
 - Compatibility With LDB Systems
 - Level of Redundancy
 - POCC
 - INMARSAT Terminals
 - Flight Operations & Monitoring Personnel Based @ NSBF

Mission Operations

Termination & Recovery

Requirements

- Facilitate / Implement Safe Termination
- Clear / Access To Ballooncraft & Balloon Impact Site
- Recover Ballooncraft & Balloon Carcass
- Arrange Return Shipment
- Remote Communications With Control Center
- Remote TM/CMD Access With Ballooncraft
- Recovery Tools & Equipment

Mission Operations Termination & Recovery

Selected Approach

- Termination
 - Planned Dry Land Recovery
 - Export Office Recommendation
 - Via Operation Control Center or Recovery Team (TBD)
 - Safety Requirements
 - Accuracy of Recovery Systems
 - Dropsonde / Enhanced Descent Vectors
 - Accuracy of Trajectory Analysis

Recovery Team

- 2-3 Man Field Team
- Field Voice & Data Communications With Control Center
- Portable LOS TM/CMD System For Balloon Control
- Lease Aircraft Surveillance Prior to Termination (TBD)
 - Safety
- Lease Recovery Vehicles As Required
- Arrange Return Shipment

Mission Operations

Summary

Mission Planning

- Enhanced Trajectory Planning
- Southern Hemisphere Summer
- Based On LDB, Feasible CE Risk
- Code-I Aware of Plans & Assessing Approach
- Alice Springs or New Zealand (TBD)

Integration & Test

- Final I&T Conducted at Wallops
- Supported Using Wallops Personnel

Launch Operations

- Conducted By NSBF
- Augmented By Wallops For Ballooncraft Readiness
- LOS TM/CMD Provided By NSBF

Mission Operations

Summary

Flight Monitor & Control

- Located at NSBF / Existing Infrastructure
- Manned By NSBF & Wallops (Demo 2000)
- PI Access Data/Command Via Internet
- Trajectory Simulation Tool Planning Aids

Termination & Recovery

- Plan Dry Land Impact
- Australia or Brazil (Demo 2000)
- Control From OCC / Execute From OCC or Field
- Remote Global Communications In The Field
- Lease Aircraft Still Optional